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ABSTRACT

We describe and implement an exact, flexible, and computationally efficient algorithm for joint component sepa-
ration and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features
are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees
of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters.
Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-
CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground
spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam
responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a
future generalization to multiresolution observations. To verify the method, we analyze simple models and compare
the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yrWMAP
data, downgraded to a common resolution of 3� FWHM. The results from the actual 3 yrWMAP temperature analysis
are presented in a companion Letter.

Subject headinggs: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

Great advances have been made recently both in experimen-
tal techniques for studying the cosmic microwave background
(CMB) and in the measurements themselves. The angular power
spectrum of temperature fluctuations has been characterized over
more than three decades in angular scale (Hinshaw et al. 2007;
Kuo et al. 2007; Readhead et al. 2004), and even the E-mode
polarization spectrum has now been measured to some precision
(Ade et al. 2008; Page et al. 2007; Montroy et al. 2006; Sievers
et al. 2007). In the coming years, even greater improvements in
sensitivity are expected, with the Planck nearing completion.

As the sensitivity of CMB experiments improves, the require-
ments on the control and characterization of systematic effects also
increase. It is of critical importance to propagate properly the un-
certainties caused by such effects through to the CMB power
spectrum and cosmological parameters, in order not to underes-
timate the final uncertainties and thereby draw incorrect cosmo-
logical conclusions.

A prime example of such systematic effects is noncosmological
foregrounds in the form of Galactic and extragalactic emission.
With an amplitude rivaling that of the temperature signal over a
significant fraction of the sky and completely dominating the po-
larization signal over most of the sky, the diffuse signal from our
own Galaxy must be separated accurately from the CMB signal
in order not to bias the cosmological conclusions. Further, the
uncertainties in the separation processmust be propagated through
to the errors on the CMB power spectrum and cosmological
parameters.

These problems have been discussed extensively in the liter-
ature, and many different approaches to both power spectrum
analysis and component separation have been proposed. Two
popular classes of power spectrum estimation methods are the
pseudo-C‘ estimators (e.g.,Wright et al. 1994; Hivon et al. 2002;
Szapudi et al. 2001) and maximum-likelihood methods (e.g.,
Górski 1994, 1997; Bond et al. 1998). For a review and com-
parison of these methods, see Efstathiou (2004). Examples of
component separationmethods are themaximum-entropymethod
(Barreiro et al. 2004; Bennett et al. 2003b; Hobson et al. 1998;
Stolyarov et al. 2002, 2005), the internal linear combination
method (Bennett et al. 2003b; Tegmark et al. 2003; Eriksen et al.
2004a), Wiener filtering (Bouchet & Gispert 1999; Tegmark &
Efstathiou 1996), the independent component analysis method
(Maino et al. 2002, 2003; Donzelli et al. 2006; Stivoli et al.
2006), and direct likelihood estimation (Brandt et al. 1994; Górski
et al. 1996; Banday et al. 1996; Eriksen et al. 2006).
The final step in a modern cosmological analysis pipeline is

typically to estimate a small set of parameters for some cosmo-
logical model, which in practice is done by mapping out the pa-
rameter posteriors (or likelihoods) using a Markov chain Monte
Carlo (MCMC) code (e.g., CosmoMC; Lewis & Bridle 2002).
To do so, one must establish an expression for the likelihood
L(C‘) ¼ P(djC‘), where C‘ is a theoretical CMB power spec-
trum and d are the observed data. It is therefore essential that the
methods used in the base analysis pipeline (e.g., map making,
component separation, power spectrum estimation) allow one to
estimate this function both accurately and efficiently.
A particularly appealing framework for this task is the CMB

Gibbs sampler, pioneered by Jewell et al. (2004) and Wandelt
et al. (2004). While a brute-force CMB likelihood evaluation
code must invert a dense signal-plus-noise covariance matrix,
C ¼ Sþ N, at a computational cost of O(N3

pix), Npix being the
number of pixels in the data set, the Gibbs sampler only re-
quires the signal and noise covariancematrices separately. Conse-
quently, the algorithmic scaling is dramatically reduced, typically
to eitherO (N 3/2

pix ) orO (N2
pix) for data with white or correlated noise,

respectively.
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In addition to being a highly efficient CMB likelihood eval-
uator in its own right, as demonstrated by several previous anal-
yses of real data (O’Dwyer et al. 2004; Eriksen et al. 2007a,
2007b), the Gibbs sampler also offers unique capabilities for
propagating systematic uncertainties end-to-end. Any effect for
which there is a well-defined sampling algorithm, either jointly
with or conditionally on other quantities, can be propagated seam-
lessly through to the final posteriors. One example of this is beam
uncertainties. Given some stochastic description of the beam, for
instance, a mean harmonic space profile and an associated co-
variance matrix, one could sample at each step in the Markov
chain one particular realization from this model and use the re-
sulting beam for the next CMB sampling steps, allowing for a
short burn-in period. The CMB uncertainties will then increase
appropriately. Similar approaches could be taken for uncertainties
in gain calibration and noise estimation.

However, rather than simply propagating a particular error
term through the system, one often wants to estimate the char-
acteristics of the effect directly from the data. In that case, a pa-
rametric model P(ajd ), a being a set of parameters describing the
effect, must be postulated. Then, if it is both statistically and com-
putationally feasible to sample from this distribution, the effect
may be included in the joint analysis, and all joint posteriors will
respond appropriately.

In this paper, we describe how noncosmological frequency-
dependent foreground signals may be included in a Gibbs sam-
pler. In this framework the CMB signal is assumed Gaussian and
isotropic, while the foregrounds are modeled either in terms
of fixed spatial templates (e.g., monopoles, dipoles, low-/high-
frequency observations) or in terms of a free amplitude and spec-
tral response function at each pixel. Our current code assumes
identical angular resolution for all frequency bands, but we out-
line in x 7 how the algorithm may be generalized to handle
multiresolution experiments.

Already with the present algorithm, we are able to perform a
complete Bayesian joint CMB and foreground analysis of cur-
rent CMB experiments on large angular scales. For example, in
the present paper we demonstrate the algorithm on a realistic
simulation corresponding to the 3 yrWMAP data. At an angular
resolution of 3� FWHM, we are able to produce the exact like-
lihood up to ‘ � 50Y60, into the regime where a cruder likeli-
hood description is likely to be acceptable (Eriksen et al. 2007b).
Further, in a companion paper (Eriksen et al. 2008) we analyze
the real 3 yr WMAP data with the same tool, providing for the
first time a complete set of physically motivated foreground
posterior distributions of the observed microwave sky, together
with their impact on cosmological parameters.

2. REVIEW OF BASIC ALGORITHMS

The algorithm developed in this paper is a essentially a hybrid
of two previous algorithms, namely, the CMB Gibbs sampler
developed by Jewell et al. (2004), Wandelt et al. (2004), and
Eriksen et al. (2004b) and the foreground MCMC sampler de-
veloped by Eriksen et al. (2006). In this section, we review these
algorithms, emphasizing an intuitive and pedagogical introduc-
tion to the underlying ideas. In x 3 we present the extensions
required to make the hybrid code functional.

Note that while we discuss temperature measurements only in
this paper, the methodology for analyzing polarization measure-
ments is completely analogous. For example, see Larson et al.
(2007) and Eriksen et al. (2007a) for details on polarized power
spectrum analysis through Gibbs sampling.

2.1. The CMB Gibbs Sampler

We first review the Gibbs sampler for CMB temperature
measurements.

2.1.1. The CMB Posterior

We choose our first data model to read

d ¼ sþ n; ð1Þ

where d are the observed data, s is the CMB sky signal, and n is
the instrumental noise. Complications such as multifrequency
observations and beam convolution will be introduced at a later
stage.

We assume both the CMB signal and noise to be Gaussian
random fields with vanishing mean and covariance matrices S
andN, respectively. In harmonic space, where s ¼

P
‘;m a‘mY‘m,

the CMB covariance matrix is given by C‘m;‘ 0m 0 ¼ ha�‘ma‘ 0m 0 i ¼
C‘�‘‘ 0�mm 0 , C‘ being the angular power spectrum. The noise ma-
trixN is left unspecified for now, but we note that for white noise
it is diagonal in pixel space, Nij ¼ �2

i �ij, for pixels i and j and
noise variance �2

i
.

Our goal is to estimate both the sky signal s and the power
spectrumC‘, which in a Bayesian analysis means to compute the
posterior distribution P(s;C‘jd). By Bayes’ theorem, this dis-
tribution may be written as

P(s;C‘jd ) / P(djs;C‘)P(s;C‘) / P(djs;C‘)P(sjC‘)P(C‘); ð2Þ

where P(C‘) is a prior on C‘, which we take to be uniform in the
following. Our final power spectrum distribution may thus be
interpreted as the likelihood and integrated directly into existing
cosmological parameter MCMC codes. Since we have assumed
Gaussianity, the joint posterior distribution may thus be written
as

P(s;C‘jd ) / e� 1=2ð Þ(d�s)TN�1(d�s)
Y
‘

e� 2‘þ1ð Þ=2½ � �‘=C‘ð Þ

C
2‘þ1ð Þ=2
‘

P(C‘);

ð3Þ

where �‘ � 1/ 2‘þ 1ð Þ
P‘

m¼�‘ ja‘mj
2
is the angular power spec-

trum of the full-sky CMB signal.

2.1.2. Gibbs Sampling

In principle, we could map out this distribution over a grid in
s and C‘, and the task would be done. Unfortunately, since the
number of grid points required for such an analysis scales ex-
ponentially with the number of free parameters, this approach is
not feasible.

A potentially much more efficient approach is to map out the
distribution by sampling. However, direct sampling from the joint
distribution in equation (3) is difficult even from an algorithmic
point of view alone; we are not aware of any textbook approach
for this. And even if there were, it would most likely involve
inverses of the joint Sþ N covariance matrix, with a prohibitive
O (N 3

pix) scaling, in order to transform to the eigenspace of the
system.

This is the situation in which Jewell et al. (2004) and Wandelt
et al. (2004) proposed a particular Gibbs sampling scheme. For
a general introduction to the algorithm, see, e.g., Gelfand &
Smith (1990). In short, the theory of Gibbs sampling tells us that
if we want to sample from the joint density P(s;C‘jd), we can

JOINT BAYESIAN COMPONENT SEPARATION 11



alternately sample from the respective conditional densities as
follows,

s iþ1  P sjCi
‘; d

� �
; ð4Þ

Ciþ1
‘  P(C‘js iþ1; d); ð5Þ

where the left-pointing arrow indicates sampling from the dis-
tribution on the right-hand side. After some burn-in period, during
which the samples must be discarded, the joint samples (s i;Ci

‘)
will be drawn from the desired density. Thus, the problem is
reduced to that of sampling from the two conditional densities
P(sjC‘; d) and P(C‘js; d).

2.1.3. Sampling Algorithms for Conditional Distributions

We now describe the sampling algorithms for each of these
two conditional distributions, starting with P(C‘js; d). First, note
that P(C‘js; d) ¼ P(C‘js); if we already know the CMB sky sig-
nal, the data themselves tell us nothing new about the CMBpower
spectrum. Next, since the sky is assumed Gaussian and isotropic,
the distribution reads

P(C‘js) /
e� 1=2ð ÞsT

‘
S�1‘ s‘ffiffiffiffiffiffiffi
jS‘j

p ¼ e� 2‘þ1ð Þ=2½ � �‘=C‘ð Þ

C
2‘þ1ð Þ=2
‘

; ð6Þ

which,when interpreted as a function of C‘, is known as the inverse
gamma distribution. Fortunately, there exists a simple textbook
sampling algorithm for this distribution (e.g., Eriksen et al. 2004b),
andwe refer the interested reader to the previous papers for details.

The sky signal algorithm is even simpler from a statistical
point of view, although more involved to implement. Defining
the so-called mean-field map (or Wiener filtered data) to be ŝ ¼
(S�1 þ N�1)�1N�1d, the conditional sky signal distribution may
be written as

P(sjC‘; d) / P(djs;C‘)P(sjC‘) ð7Þ
/ e� 1=2ð Þ(d�s)TN�1(d�s)e� 1=2ð ÞsTS�1s ð8Þ
/ e� 1=2ð Þ(s�ŝ)T (S�1þN�1)(s�ŝ): ð9Þ

Thus, P(sjC‘; d) is a Gaussian distribution with mean equal to ŝ
and a covariance matrix equal to (S�1 þ N�1)�1.

Sampling from this Gaussian distribution is straightforward,
but computationally somewhat cumbersome. First, draw two ran-
dom white-noise maps !0 and !1 with zero mean and unit var-
iance. Then solve the equation

S�1 þ N�1
� �

s ¼ N�1d þ S�1=2!0 þ N�1=2!1 ð10Þ

for s. Since the white-noise maps have zero mean, one imme-
diately sees that hsi ¼ ŝ, while a fewmore calculations show that
hssT i ¼ (S�1 þ N�1)�1.

The problematic part about this sampling step is the solution
of the linear system in equation (10). Since this is a �106 ; 106
system for current CMB data sets, it cannot be solved by brute
force. Instead, one must use a method called conjugate gradients
(CG), which only requires multiplication of the coefficient ma-
trix on the left-hand side, not inversion. For details on these com-
putations, together with some ideas on preconditioning, see
Eriksen et al. (2004b).

2.1.4. Generalization to Multifrequency Data

For notational transparency, the discussion in the previous
sections was limited to analysis of a single sky map and did not

include the effect of an instrumental beam. We now review the
full equations for the general case. See Eriksen et al. (2004b) for
full details.
Let d� denote an observed skymap at frequency �,N� its noise

covariance matrix, and A� convolution with the appropriate in-
strumental beam response. Equation (10) then generalizes to

S�1 þ
X
�

AT
�N
�1
� A�

 !
s

¼
X
�

AT
�N
�1
� d� þ S�1=2!0 þ

X
�

AT
�N
�1=2
� !�: ð11Þ

Note that we now draw one white-noise map for each frequency
band, !� . The sampling procedure for P(C‘js) is unchanged.

2.1.5. Computational Considerations

Finally, we make two comments regarding numerical stability
and computational expense. First, note that the elements of s
have a variance equal to the CMB power spectrum, which goes
as C‘ � ‘�2. To avoid round-off errors over the large dynamic
range in the solution, it is numerically advantageous to solve first
for x ¼ S�1/2s in the CG search and then to solve (trivially) for s.
The system solved by CG in practice is thus

1þ S1=2
X
�

AT
�N
�1
� A�S

1=2

 !
x

¼ S1=2
X
�

AT
�N
�1
� d� þ !0 þ S1=2

X
�

AT
�N
�1=2
� !�: ð12Þ

Second, solving this equation by CG involves multiplication
with the expression in the parentheses on the left-hand side and,
therefore, scales as the most expensive operation in the coeffi-
cientmatrix. For white noise,Nij ¼ �i�ij, this is the spherical har-
monic transform required between pixel (for noise covariance
matrix multiplication) and harmonic (for beam convolution and
signal covariance matrix multiplication) space, with a scaling of
O(N3/2

pix ). For correlated noise, it is the multiplication with a dense
Npix ;Npix inverse noise covariance matrix, with a scaling of
O(N2

pix).

2.2. The Foreground Sampler

Section 2.1 described how to sample from the exact CMB pos-
teriorP(s;C‘jd) byGibbs sampling. In this section,we very briefly
review the algorithm for sampling general sky signals presented
by Eriksen et al. (2006).
First we define a parametric frequency model for the total sky

signal, S�(a), a representing the set of all free parameters in the
model. A simple example would be S(TCMB;As; �s) ¼ TCMBþ
Asa(�) �/�0ð Þ�s , where TCMB is the CMB temperature, As is the
synchrotron emission amplitude relative to a reference frequency
�0, �s is the synchrotron spectral index, and a(�) is the conver-
sion factor between antenna and thermodynamic temperature
for differential measurements. Note that no constraints are im-
posed on the form of the spectral model in general, beyond the
fact that it should contain at most N� � 1 free parameters, N�

being the number of frequency bands of the experiment. In prac-
tice, one should also avoid models that contain nearly degenerate
parameters.
Our goal is now to compute the posterior distribution P(ajd)

for each pixel. For this to be computationally feasible, we make
two assumptions. First, we assume that the noise is uncorrelated
between pixels and, second, that the instrumental beams are
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identical between frequency bands. If so, the data may be ana-
lyzed pixel-by-pixel, and the likelihood for a single pixel simply
reads

�2 lnL(a) ¼ �2(a) ¼
X
�

d� � S�(a)

��

� �2
: ð13Þ

The posterior is as usual given byP(ajd) / L(a)P(a), where P(a)
is a prior on a. Given this likelihood and prior, it is straightfor-
ward to sample fromP(ajd), for instance, byMetropolis-Hastings
MCMC (Eriksen et al. 2006) or by inversion sampling as de-
scribed below in this paper.

3. JOINT CMB AND FOREGROUND SAMPLING

The main goal of this paper is to merge the two algorithms
described in xx 2.1 and 2.2 into one joint CMB-foreground sam-
pler, allowing us to estimate the joint posterior P(s;C‘; ajd). In
this paper we focus on a matched-beam response experiment, for
whichA� ¼ A, which is sufficient for low-resolution analysis of
high-resolution experiments such as WMAP and Planck.

3.1. Data Model and Priors

We define the joint data model to be

d� ¼ Asþ
XM
i¼1

a�;iti þ
XN
j¼1

bjfj(�)f j þ
XK
k¼1

ckgggk(�; �k)þ n�:

ð14Þ

The first term on the right-hand side is the CMB sky signal. The
second term is a sum over M spatial templates, ti, each having a
free amplitude a�;i at each frequency, for example, monopole and
dipole components. The third term is a sum over N spatial tem-
plates, f j, with a fixed frequency scaling fj(�) and a single overall
amplitude bj, for example, the H� template (e.g., Dickinson
et al. 2003) coupled to a power-law spectrumwith free-free spec-
tral index of �A ¼ �2:15. Such spatial templates are a way of
incorporating constraints on the sky from other measurements.
Their value depends on the validity of assumptions about spectra
over large frequency ranges (e.g., H� as a proxy for free-free
emission at CMB frequencies). Nevertheless, CMB experiments
with too few frequencies to constrain foregrounds adequately on
their own require such templates to provide additional constraints.
Both ti and fj are assumed to be convolved to the appropriate
angular resolution of the experiment.

The fourth term, the most important novel feature of this paper,
is a sum overK foreground components each given by an overall
amplitude ck( p) and a frequency spectrum gk(�; �k( p)) at each
pixel p. The spectral parameters �k( p) may or may not be al-
lowed to vary from pixel to pixel. By allowing independent fre-
quency spectra at every single pixel, themodel is very general and
capable of describing virtually any conceivable sky signal. The
fifth and last term, n� , is instrumental noise.

In the current implementation of our codes, we allow only
foreground spectra parameterized by a single spectral index,
g(�;�) ¼ G(�)(�/�0)�, where G(�) is an arbitrary, but fixed, func-
tion of frequency and �0 is a reference frequency. A typical
example is synchrotron emission, which may be modeled accu-
rately over a wide frequency range by a simple power law (in
intensity, flux density, or antenna temperature units) with a spa-
tially varying spectral index. The CMB is most naturally de-
scribed in terms of thermodynamic units, and we adopt this
convention in our codes. The corresponding synchrotron model

is therefore g(�;�) ¼ a(�)(�/�0)
�, where a(�) is the antenna-to-

thermodynamic conversion factor.
As in any Bayesian analysis, we must adopt a set of priors for

the parameters under consideration. For this paper, we choose the
prior most widely accepted in the statistical community, namely,
Jeffreys’ ignorance prior (e.g., Box & Tiao 1992). This prior is
given by the square root of the Fisher information measure,
P� / (jFj��)1/2 ¼ (j � @2 lnL/@2�j)1/2. Its effect is essentially
to ‘‘normalize’’ the parameter volume relative to the likelihood
and make the likelihood so-called data translated. We return
to the effect of this prior in x 4.2. We impose an additional mul-
tiplicative prior on spectral parameters, either a top hat or a
Gaussian.

For amplitude-type degrees of freedom, the ignorance prior
works out to be the usual flat prior, but for nonlinear parameters,
e.g., spectral indices, it is nonuniform. In particular, for the power-
law spectrum parameterized by a spectral index � described
above, it reads P(�) / ½

P
� ( G(�)/��½ �(�/�0)� ln (�/�0))2�1/2. The

difference between this and a flat prior is demonstrated in
x 4.2.

An important special case is the CMB power spectrum, for
which we adopt a uniform prior despite the fact that the corre-
sponding density is non-Gaussian. The main reason for doing so
is that most cosmological parameter estimation codes expect the
CMB likelihood, rather than the CMB posterior.

3.2. Sampling from the Joint Posterior Distribution

Having defined our data model and priors, the goal is now to
estimate the joint CMB-foreground posterior P(s;C‘; a�;i; bj; ck ;
�k jd ). This is achieved through the following straightforward
generalization of the previous Gibbs sampling scheme,

fs; a�;i; bj; ckgiþ1  P s; a�;i; bj; ck jCi
‘; �

i
k ; d

� �
; ð15Þ

�iþ1k  P �k jsiþ1; aiþ1�;i ; b
iþ1
j ; ciþ1k ; d

� �
; ð16Þ

Ciþ1
‘  P(C‘jsiþ1): ð17Þ

Explicitly, all amplitude-type degrees of freedom are sampled
jointly with the CMB sky signal using a generalization of equa-
tion (10), while all nonlinear spectral parameters are sampled
conditionally by inversion sampling, as described in x 3.2.2. The
conditional CMB power spectrum sampling algorithm is un-
changed, since it only depends on the CMB sky signal.

3.2.1. Amplitude Sampling

We first describe the algorithm for sampling from the condi-
tional amplitude density, P(s; a�;i; bj; ck jC‘; �k ; d).

3.2.1.1. Conditional Sampling of Amplitudes

In principle, we could take further advantage of the Gibbs
sampling approach and sample each of s, a�;i, bj, and ck condi-
tionally, given all other parameters, including the amplitudes not
currently being sampled. This method was briefly described by
Eriksen et al. (2004b) for monopole and dipole sampling and
later used for actual analysis by both O’Dwyer et al. (2004) and
Eriksen et al. (2007a). Briefly stated, this approach simply amounts
to subtracting each of the signals that is conditioned upon from
the data and using the residual map to sample the remaining pa-
rameters in place of the full data set. Its main advantage is highly
modularized, simple, and transparent computer code.

However, for general applications this is a prohibitively in-
efficient sampling algorithm due to poor mixing properties and
long Markov chain correlation lengths. The problem is due to
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strong correlations between the various amplitudes. Consider for
instance a model including a CMB sky signal, monopole and
dipole components, and a foreground template. Note that the lat-
ter has both a nonzero monopole and dipole and also smaller
scale structure.

The conditional sampling algorithmwould then go as follows.
First, subtract the current monopole, dipole, and foreground
components from the data, and sample the CMB sky based on
the residual map. The uncertainties in this conditional distribu-
tion are both cosmic variance and instrumental noise. Second,
subtract the recently sampled CMB signal and foreground tem-
plate from the data, and sample the monopole and dipoles of the
residual. The only source of uncertainty in this conditional dis-
tribution is instrumental noise alone, and the next sample there-
fore equals the previous state plus a noise fluctuation. For high
signal-to-noise data, the instrumental noise uncertainty in a single
all-sky number such as the monopole and dipole amplitude is
very small indeed, and the new sample is therefore essentially
identical to the previous. Finally, subtract the CMB signal and
the monopole and dipole from the data, and sample the fore-
ground template amplitude of the new residual. Again, with high
signal-to-noise data the new amplitude is virtually identical to
the previous.

The failure of this approach stems from the fact that the main
uncertainty in the monopole, dipole, and template amplitudes is
not instrumental noise, but rather CMB cosmic variance coupled
from template structures. This component is not explicitly ac-
knowledged in the conditional template sampling algorithmswhen
conditioning on the CMB signal, but only implicitly through the
Gibbs sampling chain. The net result is an extremely longMarkov
chain correlation length.

The reasons this conditional approachworkedwell in the anal-
yses of Eriksen et al. (2004b, 2007a) and O’Dwyer et al. (2004)
cases were different and somewhat fortuitous. Only the mono-
pole and dipole components were included in the 1 yr WMAP
temperature analysis, which couple only weakly to the low-‘
CMBmodes with a relatively small sky cut. No foreground tem-
plate sampling step as such was included, which would couple
strongly to both the monopole, dipole, and CMB signals. For the
polarization analysis of Eriksen et al. (2007a) in which fore-
ground templates were indeed included, a different effect came
into play, namely, the very low signal-to-noise ratio of the 3 yr
WMAP polarization data. At this signal-to-noise ratio, even con-
ditional sampling works well.

3.2.1.2. Joint Sampling of Amplitudes

The solution to this problem is to sample all amplitude-type
degrees of freedom jointly from P(s; a�;i; bj; ck jC‘; �k ; d). This is
a four-component Gaussian distribution with mean x̂ and co-
variance matrixA. The required sampling algorithm is therefore
fully analogous to that described in x 2.1.3 for the CMB sky
signal. The remaining task is to generalize the expressions for x̂
and A.

To keep the notation tractable, we first define a symbolic
four-element block vector of all amplitude coefficients, x ¼
(s; a�;i; bj; ck )

T . The first block of x contains the harmonic co-
efficients of s, the second block contains a�;i for all frequencies
and templates, the third contains bj for all templates with a fixed
spectrum, and the fourth contains the pixel amplitudes ck for all
pixel-by-pixel foreground components. In total, x is an ½(‘maxþ
1)2 þMNband þ N þ KNpix�-element vector.We also define a cor-
responding response vector u� ¼ 1; ti; fj(�)f j; gggk(�; �k)

� 	
T , such

that the data model in equation (14) may be abbreviated to
d� ¼ x = u� þ n� .

With this notation, the joint amplitude distribution reads

P(s; a�;i; bj; ck jC‘; �k ; d) / P(djs;C‘; a�;i; bj; ck)P(sjC‘) ð18Þ

/ e�
1
2

P
�
(d��x = u� )

TN�1� (d��x = u� ) e�
1
2
sTS�1s ð19Þ

/ e�
1
2
(x�x̂)TA�1(x�x̂): ð20Þ

Here we have implicitly defined the symbolic 4 ; 4 inverse co-
variance blockmatrix (see Appendix A for explicit definitions of
each element in this matrix)

A�1 ¼

S�1 þ ATN�1A ATN�1T ATN�1F ATN�1G

TTN�1A TTN�1T TTN�1F TTN�1G

FTN�1A FTN�1T FTN�1F FTN�1G

GTN�1A GTN�1T GTN�1F GTN�1G

2
6664

3
7775

ð21Þ

and a corresponding four-element symbolic block vector for the
Wiener filter mean,

x̂ ¼ A

P
� A

TN�1� d

tT�;jN
�1
� dP

� fj(�)f
T
j N
�1dP

� gggk(�; �k)N
�1
� d

2
66664

3
77775: ð22Þ

The sampling algorithm for this joint distribution is now
fully analogous to the one described in x 2.1.3 by equation (11).
(1) Draw Nband þ 1 white-noise maps with zero mean and unit
variance; (2) form the Wiener filter mean plus random fluctua-
tion right-hand side vector,

b ¼

P
� A

TN�1� d þ C1=2!0 þ
P

� A
T
�N
�1=2
� !�

tT�;jN
�1
� d þ tT�;jN

�1=2
� !�P

� fj(�)f
T
j N
�1d þ

P
� fj(�)f

T
j N
�1=2!�P

� gggk (�; �k)N
�1
� d þ

P
� gggk (�; �k )N

�1=2
� !�

2
66664

3
77775; ð23Þ

and (3) solve the set of linear equations,

A�1x ¼ b: ð24Þ

The solution vector x then has the required mean x̂ and covari-
ance matrixA. Again, for numerical stability it is useful to mul-
tiply both sides of equation (24) by the block-diagonal matrix
P ¼ diag(C�1/2; 1; 1; 1) and solve for Px by CG.
To demonstrate the difference in mixing efficiency between

conditional and joint amplitude sampling, Figure 1 shows two
trace plots for a high signal-to-noise simulation that included a
CMB, a monopole, and a foreground template component. While
the joint sampler instantaneously moves into the right regime
and subsequently efficiently explores the correct distribution, the
conditional sampler converges only very slowly toward the cor-
rect value. The associated long Markov chain correlation length
makes this approach unfeasible for general problems.

3.2.1.3. Preconditioning

The performance of the CG algorithm (see Shewchuk [1994]
for an outstanding introduction to thismethod) depends sensitively
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on the condition number of the coefficient matrixA, i.e., the ratio
of the largest to the smallest eigenvalue. In fact, the algorithm is
not guaranteed to converge at all for poorly conditioned matri-
ces, due to increasing round-off errors in cases that require many
iterations.

The condition number of the regularized A matrix is essen-
tially the largest signal-to-noise ratio of any component in the
system, which in practice means that of the CMB quadrupole or
the template amplitudes. For current and future CMB experi-
ments, such asWMAP and Planck, the integrated signal-to-noise
of these large-scale modes is very large. It is therefore absolutely
essential to construct an efficient preconditioner, M � A, to de-
couple these modes with brute force, M�1Ax ¼ M�1b, simply
in order to achieve basic convergence.

For the 4 ; 4 coupled system described above, we adopt a
three-stage preconditioner. First, for the low-‘CMB components
we explicitly compute all elements of A up to some ‘precond �
20Y70 (Eriksen et al. 2004b). This low-‘ block is then coupled to
the template amplitudes in a symbolic 3 ; 3 preconditioner,

M0 ¼
S�1 þ ATN�1A ATN�1T ATN�1F

TTN�1A TTN�1T TTN�1F

FTN�1A FTN�1T FTN�1F

2
64

3
75: ð25Þ

The elements in this matrix are computed by transforming each
object individually into spherical harmonic space, includingmodes
only up to ‘precond, and then performing the sums explicitly. (Note
that the seemingly intuitive proposition of computing the template
elements in pixel space, as opposed to in harmonic space, is
flawed; unless all elements are properly bandwidth limited, a non-
positive definite preconditioning matrix will result.) For exam-
ples of such computations, see Eriksen et al. (2004b).

The second part of our preconditioner regularizes the high-‘
CMB components and consists of the diagonal elements A‘m;

‘ 0m 0�‘‘ 0�mm 0 from ‘precond þ 1 to ‘max (Eriksen et al. 2004b). The
third part of our preconditioner covers the single pixel-pixel
foreground amplitudes, which have low signal-to-noise ratios,
and are preconditioned with the corresponding diagonal elements
of A only, GTN�1G.

For a typical low-resolution WMAP3 application (five fre-
quency channels degraded to Nside ¼ 64 and 3

�
FWHM reso-

lution and regularized with 2 �K rms white noise), we find that
including only the diagonal elements in the above matrix can
bring the fractional CG residual down to �10�4, while the rec-
ommended convergence criterion for single-precision data is
10�6. Thus, including the CMB template cross terms in the low-‘
CMB preconditioner in equation (25) is not just a question of
performance for the signal-to-noise levels of WMAP; it is re-
quired in order to converge at all. The total number of CG iter-
ations is typically P200 for the same application with the pre-
viously described three-level preconditioner. For some further
promising ideas on preconditioning for similar systems, see Smith
et al. (2007).

3.2.1.4. Imposing Linear Constraints

A useful addition to the above formalism is the possibility of
imposing linear constraints on one or more of the parameters.
For instance, if it is possible to calibrate the absolute offset of one
frequency band by external information, for instance, using know-
ledge about the instrument itself, it would be highly beneficial to
fix the correspondingmonopole value accordingly. Another con-
straint may be to exclude template amplitude combinations with
a given frequency spectrum, in order to disentangle arbitrary
offsets at each frequency from the absolute zero level of a given
foreground component.

In the present code, we have implemented an option for im-
posing linear constraints on the template amplitudes a ¼ fa�;ig
on the form

X
�; i

q k
�; i a�;i ¼ q k = a ¼ 0; ð26Þ

where q k ¼ fqk
�; ig, k ¼ 1; : : :;Nc, are constant orthogonality

vectors, and Nc is the number of simultaneous linear constraints.
For example, if we want to obtain a solution with a fixed mono-
pole amplitude at frequency �0, we would set q�; i ¼ ��;�0�i;0.

The total dimension of the template amplitude vector space is
D ¼ MNband,M being the number of free templates at each band.
Within this space, the constraint vectors q span anNc-dimensional
subspace V to which the CG solution must be orthogonal; amust
lie in the complement of V, denoted V C .

To achieve this, we construct a projection operator P : RD !
VC by standard Gram-Schmidt orthogonalization, which is a
D ; (D� Nc)-dimensional matrix P. To impose the constraints
defined by equation (26) on the final CG solution, equation (24)
is rewritten as

PtA�1PPtx ¼ PTb; ð27Þ

which is solved as before. Corresponding elements in the pre-
conditioner are similarly modified in order to maintain compu-
tational efficiency.

3.2.2. Spectral Parameter Sampling

With the amplitude sampling equations for P(s; a�;i; bj; ck jC‘;
�k ; d) in hand, the only missing piece in the Gibbs sampling
scheme defined by equations (15)Y (17) is a spectral parameter
sampler for P(�k js; a�;i; bj; ck ; d). In the FGFit code presented by
Eriksen et al. (2006) this task was done by Metropolis-Hastings
MCMC, a very general technique that can sample from almost
any multivariate distribution. However, it has two disadvantages.

Fig. 1.—Comparison of trace plots generated by the joint (solid line) and the
conditional (dashed line) template amplitude sampling algorithms for a simulated
data set consisting of a CMB sky signal, a monopole component, and a synchrotron
template component. The true input template amplitude is shown as a horizontal
dotted line.
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First, hundreds of MCMC steps may be required to generate two
uncorrelated samples, making the process quite expensive. Sec-
ond, and even worse for our application, the chains may need
to ‘‘burn in’’ at each main Gibbs iteration, because the amplitude
parameters have changed since the last iteration. Propermonitoring
of these issues is difficult for problems with tens of thousands of
pixels with very different signal-to-noise ratios.

Therefore, we have replaced the MCMC sampler with a direct
sampler, specifically a standard inversion sampler, in the present
version of our codes. While this algorithm is only applicable for
univariate problems, it is also quite possibly the best such sam-
pler, as it draws from the exact distribution, and no computation
of acceptance probabilities is needed. The algorithm is the fol-
lowing. First, compute the conditional probability density P(xja),
where x is the currently sampled parameter and a denotes the set
of all other parameters in the model. In our application, P(xja)
is the normalized product of the likelihood L in equation (13)
and any prior we wish to impose. Then compute the correspond-
ing cumulative probability distribution, F(xja) ¼

R x
�1 P(yja)dy.

Next, draw a random number u from the uniform distribution
U ½0; 1�. The desired sample from P(xja) is given by F(xja) ¼ u.

For multivariate problems we use a Gibbs sampling scheme to
draw from the joint distribution, and sample each parameter con-
ditionally. For example, if we want to allow free amplitudes (cs
and cd) and spectral indices (�s and �d) for both synchrotron and
thermal dust emission, the full sampling scheme reads

fs; cs; cdgiþ1  P s; cs; cdjCi
‘; �

i
s; �

i
d ; d

� �
; ð28Þ

Ciþ1
‘  P C‘jsiþ1

� �
; ð29Þ

�iþ1
s  P �sjsiþ1; ciþ1s ; ciþ1d ; �i

d; d
� �

; ð30Þ
�iþ1
d  P �djsiþ1; ciþ1s ; ciþ1d ; �i

s; d
� �

: ð31Þ

Note that it can be beneficial to iterate the latter two equations
more than once in each main Gibbs loop, in order to reduce the
correlations between consecutive samples cheaply. Typically, with
two moderately correlated spectral indices we run �3 spectral
index iterations for each main Gibbs iteration.

While this approach results in quite acceptable mixing prop-
erties for reasonably uncorrelated parameters (e.g., synchrotron
and dust spectral indices), other and more efficient methods may
be required for more complicated problems. Viable alternatives
for such situations are, e.g., rejection sampling or even standard
Metropolis-Hastings MCMC with proper burn-in monitoring.
The details of the particular sampling algorithm are of little im-
portance as long as it can be proved that the method produces
samples from the correct conditional distribution.

4. MARGINALIZATION, PRIORS, AND DEGENERACIES

The algorithm described in x 3 provides samples from the full
joint posterior P(s;C‘; a�;i; bj; ck ; �k jd). From these multivariate
samples we estimate each parameter individually by marginal-
izing over all other parameters in the system and reporting, say,
the marginal posterior mean and standard deviation.

This is straightforward, but there are subtleties and care is
required. Before applying the method to simulated data in xx 5
and 6, therefore, we discuss marginalization, priors, degenera-
cies, and high-dimensional probability distributions.

Much of the following deals with the degeneracy between un-
known offsets (or monopoles) at each band and the overall zero
level of a foreground component with a free amplitude at each
pixel. The same observations apply to any full-sky template with
a free amplitude at each band (e.g., the three dipoles). For sim-

plicity we discuss only offsets below. For the same reason, we
neglect the antenna-to-thermodynamic temperature conversion
factor. When explicit formulae are derived, the simplified and
more readable versions are given in the text; full expressions are
given in Appendices B and C.
It turns out that the degeneracy between unknown offsets and

the foreground zero level has almost no effect on the CMB com-
ponent. For the CMB, the relevant quantity is the sum over all
foregrounds, not internal degeneracies among different fore-
grounds. If one cares only about separating the CMB from fore-
grounds, and not the foregrounds themselves, much of the
following can be ignored.

4.1. The OffsetYAmplitudeYSpectral Index Degeneracy
for a Single Pixel

Consider a hypothetical experiment that observes a single pixel
at 30, 44, 70, and 100 GHz, with rms noise 10 �K in each band.
Assume that the signal is a straight power law parameterized by
amplitude A and spectral index � and that the absolute offset of
the detectors is known perfectly for the three highest frequencies,
but not for the 30 GHz band. The signal model is

T� ¼ m��;�1 þ A
�

�1


 ��

: ð32Þ

There are three free parameters in this system, the offset, am-
plitude, and spectral index, and four measurements. Since the
number of constraints exceeds the number of degrees of freedom,
it should be possible to estimate all three parameters individually.
We simulated one realization of this model, adopting the

model parameters A ¼ 100 �K, � ¼ �3, and m ¼ 0 �K and
adding white noise to each band. Our priors are chosen to be
uniform over �300 �K � A, m � 300 �K, and �6 � � � 0.
We compute the joint posterior by a simple �2 evaluation over a
200 ; 200 ; 200 grid and marginalize by direct integration.
Figure 2 shows the results in terms of one- and two-dimensional

marginal posteriors. The true input values are marked by crosses
in the top panels and by dashed lines in the bottom panels. The
posterior means are shown by dotted lines in the bottom panels.
This simple example highlights two problems that will recur

in the sections below. First, as the top left panel of Figure 2 shows,
the offset and amplitude are highly degenerate and anticorrelated;
onemay add an arbitrary offset to the 30GHz band and subtract it
from the foreground amplitude, without affecting the final �2.
This degeneracy is a crucial issue for CMB component separa-
tion. Many foregrounds have power-law spectra, and differential
anisotropy experiments (e.g.,WMAP) cannot determine absolute
offsets. The monopoles of theWMAP temperature sky maps were
determined a posteriori based on a cosecant fit to a crude plane-
parallelGalaxymodel (Bennett et al. 2003b;Hinshaw et al. 2007).
This approach is prone to severe modeling errors, precisely be-
cause of this type of degeneracy.
The second problem is that integration over a highly degenerate

joint posterior yields complicated and strongly non-Gaussianmar-
ginal posteriors. Obtaining unbiased point estimates from these
posteriors is not trivial.Clearly, the posteriormean is not an unbiased
estimator. Further, as we see in x 4.2, even the posterior maximum
is biased in general, unless special care is taken when choosing
priors.

4.2. Uniform vs. Jeffreys’ prior

The strong degeneracies found in the previous example can
be broken partially by adding more data. Consider a full-sky
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data set pixelized at HEALPix resolution Npix ¼ 16 (3072
independent pixels). Reduce the noise to 1 �K rms per pixel. Use
the same signal model as before, but with an offset common to all
pixels,

T�( p) ¼ m��;�1 þ A( p)
�

�1


 ��( p)

: ð33Þ

We adopt the spatially varying synchrotron model of Giardino
et al. (2002) as a template for the amplitude and spectral index of
the signal component.

We simulated a new data set and computed the marginal
monopole posterior by direct integration. This is straightforward
because, for a given value of m, the conditional amplitudeY
spectral index posterior reduces to a product of single-pixel
distributions. The integration therefore goes over a sum of Npix

two-dimensional grids, rather than a single 2Npix grid.
The result is shown as a dashed line in Figure 3. Two points are

noteworthy. First, themarginal distribution is nearly Gaussian, in
contrast to the strongly non-Gaussian single-pixel posterior
shown in the bottom panel of Figure 2. Thus, the additional data
seem to have broken the degeneracy. Second, however, the dis-
tribution has amean and standard deviation of �1:8 	 0:4, more
than 4 � away from zero! Repeated experiments with different
noise seeds gave similar results.

This behavior is a result of the choice of prior. We initially
adopted a uniform prior on the offset, the amplitudes, and the
spectral indices, with little thought to why we should do so. This
was a poor choice. Jeffreys (1961) argued that when nothing is
known about a particular parameter, one ought to adopt a prior
that does not implicitly prefer a given value over another, relative
to the likelihood. This is not in general the uniform prior.

Jeffreys argued that the appropriate ignorance prior is given by
the square root of the Fisher information measure,

PJ(a) �
ffiffiffiffiffiffiffi
F��

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� @2 lnL

@2a

� s
; ð34Þ

where the angle brackets indicate an ensemble average. This
prior ensures that no parameter region is preferred based on the
parameterization of the likelihood alone; it is therefore a proper
ignorance prior (e.g., Box & Tiao 1992).

Fig. 3.—Comparison of the marginal offset posterior for a uniform (dashed
line) and Jeffreys’ ignorance (solid line) prior on the spectral index�. See x 4.2 for
a full discussion of both the model and details of the prior.

Fig. 2.—One- (bottom) and two-dimensional (top) marginal posteriors for the single-pixel and four frequency-band data set described in x 4.1. The model includes a
free offset for the lowest frequency, a foreground amplitude, and a spectral index. The contours in the two-dimensional plots indicate where�2 ln P has dropped by 0.1,
2.3, 6.17, and 11.8, respectively, corresponding to the peak and 1, 2, and 3 � regions for a Gaussian distribution. The crosses mark the true values. In the one-dimensional
plots, the dashed lines indicate the true values, and the dotted lines show the marginal posterior mean.
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The log-likelihood corresponding to the model defined in
equation (32) reads

�2 lnL ¼
X
�

d� � m��;�1 � A �=�1ð Þ�

��

" #2
: ð35Þ

Computing the second derivatives of this expression with re-
spect to A, m, and �, we find that the appropriate Jeffreys’ priors
for the three parameters are

PJ(A) � 1; ð36Þ
PJ(m) � 1; ð37Þ

PJ(�) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�

1

��

�

�1


 ��

ln
�

�1


 �" #2vuut ; ð38Þ

respectively. In general, the ignorance prior for any linear pa-
rameter in a Gaussian model is uniform, because the second
derivative of the likelihood is constant. However, for nonlinear
parameters greater care is warranted.

Figure 4 shows Jeffreys’ prior for the spectral index �, limited
to�4 � � � �2; � ¼ �2 is given about 2.5 times more weight
than � ¼ �4. Intuitively, this is necessary because there is an
asymmetry between a steep and a shallow spectrum. A steep
spectrum means that the signal dies off quickly with frequency,
while a shallow spectrum implies that it maintains its strength
longer. Thus, there is a larger allowed parameter volume with
steep indices than with shallow, leading to an imbalance in terms
of marginal probabilities. This parameterization effect is coun-
tered by the Jeffreys’ prior.

The solid line in Figure 3 shows the result of using Jeffreys’
prior instead of a uniform prior. Similar behavior is observed
independent of noise realization. The conclusion is clear: a proper
ignorance prior leads to unbiased estimates, while a naive uni-
form prior leads to biased estimates.

In addition to this basic ignorance prior, it may be beneficial
to adopt physical priors, based on knowledge from other ex-
periments. For example, if one had reason to expect that the
dominant signal in a given data set were Galactic synchrotron
emission, a reasonable prior could be � ¼ �3:0 	 0:3, based on
low-frequency measurements. The physical prior is multiplied
by the ignorance prior, taking account of both effects. In the rest

of the paper, when we say that a Gaussian prior is adopted for the
spectral indices, we mean a product of a Gaussian and Jeffreys’
prior.

4.3. Marginalization over High-dimensional
and Degenerate Posteriors

Section 4.2 shows that given sufficient data and an appropriate
prior, the marginal posterior is a good estimator of the target
parameter. In this section we investigate what happens when
the data are not sufficiently strong to break a degeneracy. We
replace the single-channel offset m by a template amplitude b
coupled to a fixed free-free template tA( p) and a spectral index
of �A ¼ �2:15,

T�( p) ¼ btA( p)
�

�1


 ��2:15
þA( p) �

�1


 ��( p)

: ð39Þ

Two modifications are made to the simulation. First, the spec-
tral index of the synchrotron component is fixed to �s ¼ �3,
rather than being spatially varying. Second, a fifth frequency
channel is added at 143GHz. No free-free component is added to
the data; the optimal template amplitude value is zero. The ques-
tion is whether these data are sufficient to distinguish between
synchrotron and free-free emission with similar spectral indices
of �3 and �2.15, respectively.
The answer is no. Figure 5 shows the marginal template am-

plitude posteriors, computed by direct integration as in x 4.2.
The different lines correspond to different Gaussian priors im-

posed on the synchrotron spectral index. All are centered on the
true value �3, but with different standard deviations ��s. With
the strong prior of ��s ¼ 0:01, the amplitude posterior is well
centered near the true value of zero. However, when the prior is
gradually relaxed, the marginal posterior widens and drifts away
from the true value. The marginal posterior is not a useful esti-
mator for the template amplitude in this case.
This behavior is explained by the fact that with 3072 inde-

pendent pixels the contribution of noise to the offset amplitude is
insignificant compared to the uncertainty introduced by coupling
to the synchrotron component. Moreover, the amplitude and
spectral index distributions are similar for the two foreground
components. As a result, the joint distribution becomes long,
narrow, and curved, like that in the top middle panel of Figure 2.
The marginal one-dimensional posteriors are dominated by the

Fig. 4.—Jeffreys’ ignorance prior for the spectral index �, defined by eq. (33).
Steep indices are given less weight than shallow ones to compensate for their
smaller overall impact on the likelihood.

Fig. 5.—Marginal free-free template amplitude posteriors for various priors
on the synchrotron spectral index. See x 4.3 for a full discussion of this case.
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‘‘boomerang wing’’ orthogonal to the parameter axis. Similarly,
the ‘‘wing’’ parallel to the axis is diluted. Given sufficiently strong
degeneracies, the marginal distributions no longer contain the
maximum-likelihood point within their, say, 3 � confidence re-
gions. When the prior is made increasingly tight, however, the
wings of the distribution are gradually cut off, and the marginal
distribution homes in on the true value. Thus, the collection of
distributions shown in Figure 5 in some sense visualizes the joint
posterior.

This behavior may be quantified by means of the covariance
matrix of the Gaussian amplitude part of the system, defined in
equation (21). A useful quantity describing this matrix is its con-
dition number, the ratio of its largest and smallest eigenvalues.
For the particular case discussed above, we find that the condi-
tion number is 4 ; 106, which, although tractable in terms of
numerical precision for double precision numbers,6 indicates a
very strong degeneracy.

4.4. The Offset vs. Amplitude Degeneracy for Full-Sky Data

The final example we consider before turning to realistic sim-
ulations is the same as in x 4.2, except we allow a free offset for
all frequency bands, not just one. (This is characteristic of real
experiments, which do not know the absolute zero point at any
frequency.) The model is

T� ¼ m� þ A( p)
�

�1


 ��( p)

: ð40Þ

If the spectral index is constant over the sky, �( p) ¼ �, this is
a perfectly degenerate model,

T� ¼ m� þ A( p)
�

�1


 ��

ð41Þ

¼ m� þ �m
�

�1


 ��
" #

þ A( p)� �m½ � �

�1


 ��

ð42Þ

¼ m 0� þ A 0( p)
�

�1


 ��

: ð43Þ

One can simply add a constant to the foreground amplitude and
subtract a correspondingly scaled value from each offset. It is
thus impossible to determine individually the absolute zero level
of the foreground component and offsets. To obtain physically
relevant results, external information must be imposed.

Spatial variations in the spectral index partially resolve this
degeneracy. In the Giardino et al. (2002) synchrotron model, the
spectral index �G varies smoothly on the sky between �2.5 and
�3.2. The condition number of the foreground amplitude-offset
covariance matrix is 2 ; 107, and the covariance matrix is no
longer singular. A modified index model with 10 times smaller
fluctuations but the same mean [�( p) ¼ 0:9h�Gi þ 0:1�G] in-
creases the condition number by 2 orders of magnitude, to
2 ; 109.

These strong degeneracies lead to the same quantitative be-
havior as seen for the marginal free-free template amplitude
posterior in x 4.3, making it very difficult to estimate both all the
offsets and the foreground amplitude zero level individually. In

practice, external constraints are required.We have implemented
two approaches for dealing with this degeneracy in our code,
both based on the projection operator described in x 3.2.1.

The first and more direct approach is to assume that the offsets
of one or more bands are known a priori by external information.
For instance, if an experiment somehow measured total power,
as opposed to differences alone, detailed knowledge about the
instrument itself could be used for these purposes. The advan-
tage of this approach is that it is exact, assuming the validity of
the prior, and the accuracy of all uncertainties is maintained. It
is implemented simply by demanding that m�0 ¼ 0, which re-
quires, in terms of the orthogonality vectors defined in x 3.2.1,
q�;i ¼ ��;�0�i;0.

The second approach is based on the observation that the
degeneracy between the foreground amplitude and the offsets
seen in equation (43) leads to a very specific frequency distribu-
tion of offset amplitudes. Specifically, m 0� ¼ ½m� þ �m(�/�1)

��,
where �m is an arbitrary constant, but common to all frequency
bands. It is therefore possible to require that the set of offsets
should not have a frequency spectrum that matches the fore-
ground spectrum.

The corresponding constraint on m� may be derived from

�2 ¼
X
�;pp 0

m� � �m
�

�1


 ��( p)
" #

;N�1�; pp 0 m� � �m
�

�1


 ��( p 0)
" #

ð44Þ

by first taking the derivative with respect to �m and then en-
forcing a vanishing foreground component, �m ¼ 0,

X
�

m�

X
p;p 0

N�1�;pp 0
�

�1


 ��( p 0)
" #

¼ 0: ð45Þ

The expression in brackets says that the offsets should be or-
thogonal to the mean noise-weighted foreground spectrum.

If the total signal model includes more than one signal com-
ponent with a free amplitude at each pixel, then these should be
included jointly in the above �2. A particularly important case
is that including both a CMB signal, which has a frequency-
independent spectrum, and a proper foreground component. For
this case, we have

�2 ¼
X
�; pp 0

m� � m0 � �m
�

�1


 ��( p)
" #

; N�1�;pp 0 m� � m0 � �m
�

�1


 ��( p 0)
" #

; ð46Þ

where m0 is the additional degree of freedom introduced by the
CMB signal. The equivalent constraint on m� derived from this
expression is notationally more involved (see Appendix C for a
full derivation and constraints), but may be written as before in
terms of a set of orthogonality vectors qi

� .
While this orthogonality constraint is effective for estimating

the absolute zero level of the foreground component in question,
it corresponds to a strong implicit prior that is not likely to be com-
patible with reality. If there are indeed random offsets at all fre-
quencies, some fractional combination of these offsets will mimic
a foreground component. In the above approach, this component
is defined to be a foreground signal, rather than an offset. Further,

6 The absolute limit on the condition number for reliable matrix inversion is
10�6 for single-precision arithmetic and 10�12 for double precision. However, in
practice one should stay well below these values, in particular for iterative ap-
plications, since small numerical errors may propagate in an uncontrolled manner.
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no mixing between the two components is allowed. Thus, the
estimated error bars on both the offsets and foreground zero level
will be underestimated.

Recall, however, that this entire discussion concerns the rel-
ative contributions to the foreground zero level and the free
offsets, not the CMB signal, which relies on the sum of the two
components alone. The fact that the estimated error in the fore-
ground zero level is underestimated by a small factor, say, 4 or 5
(�est � 0:5 �K vs. �true � 2 �K; see the simulation described in
x 6), is of no consequence for most applications. Far more im-
portant is the fact that this approach provides excellent estimates
of both the CMB sky signal and the spectral index distribution,
the two quantities where most of the physics lie. This is in sharp
contrast to the method employed by the WMAP team, which is
based on a cosecant fit to a plane-parallel Galaxymodel (Bennett
et al. 2003b; Hinshaw et al. 2007). While that specific approach
is prone to severe modeling errors because of its lack of detailed
foreground modeling, the current approach is internally consis-
tent with respect to all signal components. For more discussion
on this issue, see Appendix C, as well as the actual analysis of the
3 yr data presented by Eriksen et al. (2008). In that analysis, a
common offset of ��13 �K is detected in all frequency bands,
as well as a significant residual dipole in the V-band data.

4.5. Summary

The above discussion may be summarized by the following
observations.

1. The marginal mean is a good estimator only for mildly de-
generate and non-Gaussian joint distributions. Strongly degen-
erate models should be avoided, because they are difficult to
summarize by simple statistics, and because it takes a prohibitive
number of samples to fully explore them.

2. The uniform prior is a proper ignorance prior for Gaussian
variables only. In general, Jeffreys’ rule should be used in the
absence of informative priors.

3. For experiments with unknown offsets at each frequency
band, there is a strong degeneracy between these offsets and the
overall zero level of the foreground amplitudes. This degeneracy
should be broken by external or internal priors, if marginal pos-
teriors are to be used as estimators.

5. CODE VERIFICATION

In x 4 we considered simple toy models to develop intuition
about the target distributions. We used analytical, brute-force
computations to avoid the complexities of real-world computer
code. In this section, we turn our attention to Commander, our
implementation of the joint foreground-CMB Gibbs sampler
described in x 3.

Three conditional distributions are involved in this joint Gibbs
sampler, namely, the CMB power spectrum distribution P(C‘js),
the amplitude distribution P(s; a�;i; bj; ck jC‘; �k ; d ), and the spec-
tral parameter distribution P(�k js; a�;i; bj; ck ; d ). In xx 5.1Y5.3
we test the output from Commander for these three conditional
distributions against analytical expressions, at low resolution, to
verify both the general sampling algorithms and our specific
implementation.

5.1. The CMB Power Spectrum Sampler

To verify the CMB power spectrum distribution P(C‘js), we
construct a low-resolution CMB-only simulation as follows.
Draw a random CMB realization from a standard �CDM power
spectrum (Spergel et al. 2007), smooth to 10� FWHM, and pix-
elize at Nside ¼ 16. Add white noise of 1 �K rms to each pixel.

Impose the WMAP Kp2 sky cut (Bennett et al. 2003b), without
point sources and downgraded to Npix ¼ 16, on the data.
We compute slices through the corresponding likelihood by

considering each ‘ individually, fixing all other multipoles at the
input power spectrum,with a brute-force calculation in pixel space
(e.g., Eriksen et al. 2007b) and with Commander. The outputs
from the latter are smoothed through Rao-Blackwellization (Chu
et al. 2005) to reduce Monte Carlo errors.
Figure 6 shows the results for four multipoles. The theoretical

input spectrum is shown by vertical solid lines, and the true re-
alization spectrum is shown by dashed lines. Commander re-
produces the CMB power spectrum distributions perfectly.

5.2. The Gaussian Amplitude Sampler

To verify the amplitude distribution P(s; a�;i; bj; ck jC‘; �k ; d ),
we construct a simulation at Nside ¼ 8 (768 independent pixels,
angular resolution 20� FWHM). The CMB realization is the same
as in x 5.1, appropriately smoothed. Five frequency channels are
simulated, corresponding to the fiveWMAP channels. In addition
to the CMB sky signal, s, we add a synchrotron signal, c( p), with
a spatially varying spectral index, a dust template with an am-
plitude, b, scaled to unity at W band, and a a0 ¼ �10 �Kmono-
pole to the K band. (See foreground description in x 6.1 for
further details on this model.) Thus, all four types of amplitudes
are represented. White noise of 1 �K rms is added to each pixel
at each frequency.
We fix the CMB power spectrum and synchrotron spectral

index map, and compute the joint Gaussian amplitude distribu-
tion both analytically and with Commander. The analytical com-
putation is performed by direct evaluation of the mean x̂ and
covariance matrix A defined by equations (21) and (22). The
marginal variances of each parameter are given by the diagonal
elements of A.
Figure 7 shows the marginal distributions for one parameter

of each type. Again, Commander reproduces the exact analytical
result perfectly.

5.3. The Spectral Index Sampler

To verify the spectral index sampler for P(�k js; a�;i; bj; ck ; d ),
a single-pixel distribution, we simulate a single pixel. The signal
model is identical to that in x 4.1, comprising a synchrotron com-
ponent with unknown amplitude and spectral index, plus an un-
known offset at the lowest frequency.
We compute the corresponding three-dimensional joint pos-

terior bydirect grid evaluationand byCommander. Figure 8 shows
the corresponding marginal distributions. Again, we find perfect
agreement. All conditional distributions currently implemented
in Commander have thus been verified.

6. APPLICATION TO SIMULATED 3 YR WMAP DATA

We turn now to a more realistic simulation, with properties cor-
responding to the 3 yrWMAP data. The simulation has two goals.
First, to show that the method can handle data with realistic com-
plexities, and that it is applicable to the current WMAP data and
(even more importantly) the upcoming Planck data. Second, to
provide the necessary background for understanding the results
from the actual 3 yr WMAP analysis presented by Eriksen et al.
(2008).

6.1. Simulation, Model, and Priors

We construct the simulation as follows. Draw a CMB sky re-
alization from the best-fit �CDM power spectrum presented by
Spergel et al. (2007). Convolve with each of the beams of the 10
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differencing assemblies of WMAP (Bennett et al. 2003a), pix-
elized at a HEALPix resolution of Nside ¼ 512. Add white noise
to each map with standard deviation �( p) ¼ �0/ Nobs( p)½ �1/2,
where Npix is the number of observations at pixel p (provided on
LAMBDA7 together with the actual sky maps).

Downgrade these 10maps to a common resolution of 3
�
FWHM

and Npix ¼ 64, band limiting each map at ‘max ¼ 150. Create
frequency maps by co-adding differencing assembly maps at the
same frequency [e.g., Q ¼ (Q1 þ Q2)/2]. Add uniform white
noise of 2 �K rms to each frequency map to regularize the noise
covariance matrix.

Figure 9 shows the CMB and noise spectra of the co-added
V-band data, both at the native resolution of the frequency
band (dashed lines) and at the common 3� FWHM resolution
(solid lines). The CMBY toY regularization noise ratio is unity at
‘ � 120 and less than 2% at ‘max ¼ 150. Both the instrumen-
tal and the regularization signal-to-noise ratios are k500 at ‘ �
50 and therefore negligible at these scales compared to cosmic
variance.

Instrumental noise averaged over the full sky is larger than the
regularization noise everywhere below ‘P80. In the ecliptic
plane, where the instrumental rms is about a factor of 2 larger

than the full-sky average due to WMAP’s scanning strategy, it
dominates below ‘P 100. The result of this unmodelled noise
term is, as we see below, a somewhat high pixel-by-pixel �2 in
the ecliptic plane. However, since this error term is correlated
only on very small scales (the beam size of 3� FWHM), and we
understand its origin and benign behavior, it does not represent a
significant problem for the analysis. With additional years of
WMAP observations and the addition of the Planck data, this
noise contribution will be further suppressed. Further, we will
consider in the future various approaches for taking this term into
account, for instance, by computing explicitly the corresponding
sparse covariance matrix.

Our foreground model has three components, synchrotron,
free-free, and thermal dust emission. For synchrotron emission,
where the spectral index is known to vary substantially with po-
sition on the sky, we extrapolate the 408MHz map (Haslam et al.
1982) using amap of the spectral index for each pixel. For the latter
we use an updated version of the Giardino et al. (2002) spectral
index map that is based on 408 MHz and WMAP 23 GHz data,
after removing the free-free emission via theWMAP maximum-
entropy method free-free model (Bennett et al. 2003b).8 The

Fig. 6.—Verification of the CMB power spectrum distributions produced by Gibbs sampling. Black lines show analytically computed slices through the joint likelihood
L(C‘), and red lines show the same computed by Gibbs sampling. Vertical lines show the theoretical input spectrum used to generate the simulation (solid lines) and the
realization specific spectrum (dashed lines).

7 See http:// lambda.gsfc.nasa.gov.

8 These models were produced as part of the development of the Planck Sky
Model, under the coordination of Planck Working Group 2.

JOINT BAYESIAN COMPONENT SEPARATION 21No. 1, 2008



free-free model is defined by the H� template of Finkbeiner
(2003) scaled to 23 GHz assuming an electron temperature of
Te ¼ 4000 K and a spatially constant spectral index of �A ¼
�2:15. The dust model is based on model 8 of Finkbeiner et al.
(1999) evaluated at 94 GHz and scaled to other frequencies using
a single-component modified blackbody spectrum with Td ¼
18:1 K and an emissivity index of � ¼ 2:0. Anomalous dust is
ignored in this analysis.

Guided by the results of Eriksen et al. (2008) we add a com-
mon offset to all frequencies of �13 �K. No dipole contribu-
tions are added to the simulations.

For the power spectrum analysis in x 6.4, we analyze the same
realization with and without foregrounds, but with the same sky
cut. This allows us to distinguish between sky cut and foreground-
induced effects.

We adopt the same parametric signal model as that used by
Eriksen et al. (2008),

T�( p) ¼ s( p)þ m0
� þ

X3
i¼1

mi
� êi = n̂( p)½ �

þ b t( p)a(�)
�

�dust0


 �1:7" #
þ f ( p)a(�)

�

�0


 ��( p)

: ð47Þ

The first term is the CMB sky signal. The second and third terms
are the monopolem0 and three dipole componentsmi defined by
standard Cartesian basis vectors. The fourth term is a dust tracer,
based on the FDS template coupled to a fixed spectral index of
�d ¼ 1:7 and a free overall amplitude b. The postulated power-
law spectrum does not match the modified blackbody spectrum
used to create the simulation, and modeling errors are therefore
to be expected. Thefifth term is a single low-frequency foreground
component with a free amplitude f ( p) and spectral index �( p) at
each pixel p. The antenna-to-thermodynamic differential tem-
perature conversion factor is a(�), as always.
In addition to the previously described Jeffreys’ prior, we adopt

a prior of � ¼ �3 	 0:3 for the low-frequency foreground spec-
tral index, assuming that the foreground signal is synchrotron
emission unless the data require otherwise. This is not a partic-
ularly strong prior. The free-free spectral index of �A ¼ �2:15 is
only 2.8 � away from the prior mean, and it does not take a large
free-free amplitude to overcome this. For instance, near the Ga-
lactic plane the standard deviation of the marginal index poste-
rior is �0.01, 30 times smaller than the prior width. At high
latitudes, on the other hand, the synchrotron spectral index is for
all practical purposes unconstrained. The prior prevents this com-
ponent from interfering with the CMB signal in regions where its
amplitude is low.

Fig. 7.—Verification of Gaussian amplitude sampler. Analytical marginal posteriors are shown by smooth distributions, and results from Commander are shown by
histograms. The true values are indicated by vertical dashed lines.
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We impose the orthogonality constraint discussed in x 4.4 to
break the degeneracy between the free monopoles and dipoles at
each band, and the foreground zero level and dipole. An important
goal in the following is to see whether this approach yields sen-
sible results.

With the simulation, model, and priors defined, we compute
the joint and marginal posteriors using the machinery described
earlier in the paper. Thewall-clock time for generating one single
sample is �50 s, parallelized over five 2.6 GHz AMD Opteron
2218 processors, one for each frequency band. We generate five
chains with 1000 samples each, for a total wall-clock time of
14 hr. The total computational cost is 350 CPU hr.

6.2. Burn-in, Correlation Lengths, and Convergence

We begin our examination of the results by plotting the output
Markov chains as a function of iteration count in Figure 10. Each
panel shows the evolution of one parameter, such as the CMB
power spectrum coefficient for a singlemultipole or the dust tem-
plate amplitude.

Burn-in is a crucial issue for Markov chain algorithms. The
chainswere initializedwith a randomCMBpower spectrum over-
dispersed relative to the true distribution, and the spectral indices
of the low-frequency foreground component were drawn ran-
domly and uniformly between �4 and �2. The Gibbs sampler
needs some time to converge to the equilibrium distribution; as
we see in Figure 10, about 200 iterations are required to reach the
equilibrium state.

The last parameters to equilibrate are the global monopole and
dust amplitudes, because the uncertainty in these very high signal-
to-noise parameters is very small, and only small steps can be
made between consecutive Gibbs samples. Moreover, since these
are global parameters, they couple to all other parameters.

The �2 trace plot shows an interesting feature. After reaching
a minimum �2 solution after about 100 iterations, the chain sta-
bilizes at a very slightly higher equilibrium value. This is due to
the fact that the full distribution consists not only of the sky sig-
nal components, but also the CMBpower spectrum.Maximizing
the total joint posterior value is therefore a compromise between
minimizing the sky signal �2 and optimizing the CMB power
spectrum posterior. At iteration number 100, the CMB compo-
nent is still burning in, whereas the foreground amplitude, the
single most important parameter in terms of �2, has already
reached its equilibrium. TheMarkov chain thus overshoots in �2

minimization until the CMB power spectrum equilibrates.
Correlation length is a second crucial issue for Markov chain

algorithms. In general, classic Metropolis-Hastings algorithms

Fig. 8.—Comparison of marginal posteriors for a single pixel, computed both
analytically (thick, dashed line) andwithCommander (thin line). The true value is
indicated by a vertical dotted line.

Fig. 9.—Top: CMB (black lines) and noise power spectra (blue and red lines)
for the 3 yr WMAP V-band channel. Solid lines show spectra for the 3� FWHM
data set, and dashed lines show spectra at the native resolution of the V-band data.
Bottom: CMB signal-to-noise ratio for instrumental (blue line) and regularization
(red line) noise.
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have a long correlation length, because they propose relatively
small modifications at each iteration in order to maintain high
acceptance probability. The Gibbs sampler works differently.
Because it samples from exact conditional distributions, large
jumps are perfectly feasible, at least in the absence of strong con-
ditional correlations. ( In the present case there are no such strong
correlations.) The CMB power spectrum and CMB sky signal
are only weakly correlated in the high signal-to-noise regime,
and the foreground spectral index couples onlymoderately strongly
to the foreground amplitude of the same pixel and weakly to
anything else. The result is excellent mixing properties and short
correlation lengths.

This translates into a high sampling efficiency and a relatively
small number of samples required for convergence. To quantify

this, we adopt the widely used Gelman-Rubin R statistic (Gelman
& Rubin 1992), which is the ratio between two variance esti-
mates. If the Markov chains have converged, the two estimates
should agree, and their ratio, R, should be close to unity. A typ-
ical recommendation is that R should be less than 1.1 to claim
convergence, given that the chains were initially overdispersed,
although smaller numbers are clearly better.
Computing this statistic for the five chains above, while dis-

carding the first 200 samples, we find that R is less than 1.01 for
the CMB power spectrum up to ‘ � 100, less than 1.05 for the
both the CMB pixel and foreground amplitudes all over the sky,
and less than 1.01 for the template amplitudes. Thus, even with
such a relatively modest number as 4000 samples, excellent con-
vergence has been reached on all marginal statistics.We return to
the question of joint convergence of the CMB spectrum poste-
rior in x 6.4.

6.3. Component Separation Results

We now turn to the marginal distributions of the estimated
signal parameters and focus first on the signal components. The
CMB power spectrum is discussed separately in x 6.4. The sky
map results are summarized in Figure 11 in terms of the marginal
posterior means, standard deviations, and differences between
the posterior means and the input maps. Table 1 lists the mono-
pole and dipole results. The dust template amplitude posterior
mean and standard deviation is b ¼ 1:013 	 0:002.
Considering first the left column in Figure 11, we see that the

three sky map reconstructions are visually compelling. No ob-
vious foreground residuals are observed in the CMB map, fa-
miliar structures such as the North Galactic Spur andGumNebula
are seen in the foreground amplitude map, and the spectral index
map distinguishes clearly between the known synchrotron and
free-free regions.
These visual considerations are quantified in the right column,

where the input maps have been subtracted from the posterior
means.9 We see that the CMB map has residuals at the �3 �K
rms level, with a peak-to-peak amplitude of 	8 �K. Little of
these residuals is correlated on the sky except for a few patches
near the Galactic plane. Most of the differences are simply due to
instrumental noise.
For the foreground amplitude, more distinct correlated patches

are seen, in particular in regions with strong free-free emission.
This is due to the fact that a single power law is not a sufficiently
good approximation to the sum of the free-free and synchrotron
components, relative to the statistical uncertainty.
Finally, even the spectral index difference map shows clearly

correlated regions and, additionally, a negative bias of about
�0.1. This bias is primarily due to two effects. First, as reported
at the beginning of this section, the dust template amplitude is
overestimated by 1%Y2%, mainly because of mis-specification
of the dust spectrum. As a result, slightly too much signal is sub-
tracted from the higher frequency channels, and this in turn
steepens the spectral index of the remaining signal. Second, at
high latitudes the data are noise dominated, and the � ¼ �3	
0:3 prior becomes active. Because the true signal has an average
of ��2.9 at high latitudes, a bias of ��0.1 results.
Comparing the actual difference maps with the estimated

errors shown in the middle column of Figure 11, we see that
the errors of the CMB and foreground amplitudes are under-
estimated by a factor of �1.5Y2. (These plots are typically scaled
to a dynamical range of �	3 �. The expected peak-to-peak

Fig. 10.—Trace plots showing the evolution of the Gibbs chains as a function
of iteration count, for each type of parameter. The true input values are indicated
by a horizontal dashed line, where applicable. The sky map type parameters are
thinned by a factor of 10 to reduce disk space requirements.

9 For the foreground amplitude, the input map was estimated by fitting a
single power law to the sum of the synchrotron and free-free components.
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range in a difference plot is therefore roughly 3 times the rms
error.) This is due to modeling errors in two forms. First and fore-
most, we neglected the smoothed instrumental noise in our data
model, and this causes a significant unmodelled uncertainty at the
smoothing scale. However, being randomwith zero mean, it does
not induce significant structure on larger scales, and it therefore
has negligible impact on the scales of cosmological interest (‘ �
30). Second, the foreground model is simplified compared to the
input, as we approximate the sum of two power-law components
by a single power law and also assume a simple power-law dust
spectrum while the input sky has a modified blackbody spectrum.
Combined, these effects introduce errors not captured by the es-
timated statistical uncertainties.

Table 1 lists the posterior mean and standard deviations of the
monopole and dipole coefficients. Recall that the input param-
eters in the two cases were �13 and 0 �K, respectively. In gen-
eral, these values are reconstructed reasonably well, although
the error estimates are somewhat underestimated for the Ka- and
Q-band monopoles. We see that the orthogonality constraint

described in x 4.4 is quite effective, producing a good estimate of
all quantities of interest. On the other hand, it does have the effect
of artificially reducing the error bars on the template amplitudes
somewhat and also correlating them. However, misestimation of
the monopole error estimates by a few microkelvin is a small
price to pay for an absolute estimate of the foreground amplitudes
to within a few percent.

The features seen in the CMB rms map may be understood
qualitatively in terms of the above results. First, the most domi-
nating structure is a hot spot centered on the Galactic plane. This
is mainly due to the coupling between the Galactic foregrounds
and the x-component of the dipole. Because of the large fore-
ground signal in this direction, it is hard to estimate the corre-
sponding dipole component (see Table 1), and this transfers
uncertainty from low to high latitudes. Note, however, that this
particular component has a very specific correlation structure on
the sky, which is taken implicitly into account by the algorithm;
this uncertainty does therefore not significantly affect high-‘modes
in the power spectrum, even though it looks visually dominating
in a marginal rms map. Second, the masked Galactic plane has a
very high uncertainty, although not infinite; the requirement of
isotropy implies that the modes inside this plane are to some
extent restricted, at least on large angular scales. Finally, as ex-
pected there is a (weaker) correlation between the foreground
amplitude and spectral index maps and the CMB rms map.

Figure 12 shows the average �2 computed over the 4000 ac-
cepted samples. Avalue of 15 in this plot corresponds to a model
that is excluded at the 99% confidence level. Two points are worth
noticing in this plot. First, the ecliptic plane stands out with higher
�2 values. As described above, this is due to the unmodelled,
smoothed instrumental noise. At a smoothing scale of 3� FWHM,
this component is not fully negligible for the 3 yr WMAP data
relative to the CMB signal and, therefore, causes a slight bias at

Fig. 11.—Marginal posterior sky signals from theWMAP simulation. The left column shows the posterior mean for each pixel, the middle column shows the posterior
standard deviation, and the right column shows the difference between the estimated posterior mean and the known input signal. From top to bottom, the rows show the
CMB solution, the low-frequency foreground amplitude solution, and the low-frequency spectral index solution.

TABLE 1

Monopole and Dipole Posterior Statistics

Band Monopole

Dipole X

(�K)

Dipole Y

(�K)

Dipole Z

(�K)

K-band............. �12:4 	 0:5 �0:6 	 0:7 �0:4 	 0:5 �0:1 	 0:1

Ka-band........... �10:3 	 0:5 �1:2 	 0:7 �0:7 	 0:5 �0:2 	 0:1
Q-band............. �10:8 	 0:5 �1:1 	 0:7 �0:7 	 0:5 �0:1 	 0:1

V-band............. �12:3 	 0:5 �0:6 	 0:7 �0:6 	 0:5 �0:1 	 0:1

W-band............ �12:8 	 0:5 �0:3 	 0:7 �0:2 	 0:5 �0:1 	 0:1

Note.—Means and standard deviations of the marginal monopole and dipole
posteriors.

JOINT BAYESIAN COMPONENT SEPARATION 25No. 1, 2008



the smallest scales, ‘k 100. However, we are mainly interested
in ‘ � 50, and in this range, the instrumental signal-to-noise ratio
exceeds 100 everywhere. This term does not affect the CMB
signal of primary interest.

The actual foreground-induced modeling errors are very small.
Indeed, despite the fact that we approximate the sum of two
different power laws with a single component and assume an
incorrect dust spectrum, the �2 distribution is essentially perfect
near the ecliptic poles, and the residuals are very small even close
to the Galactic plane.

However, the �2 for the global solution as a whole is some-
what poor, with a reduced �2 of 1.68. This large value is largely
dominated by unmodelled, smoothed instrumental noise in the
ecliptic plane, as discussed above; when analyzing the same data
set at a smoothing scale of 6�, rather than 3�, we found a reduced
�2 � 1:1. Thus, when using the products from this analysis in
subsequent studies (e.g., for cosmological parameter estima-
tion), it is important to include only those scales that are unaf-
fected by the degradation process itself.

In summary, the overall results are very promising indeed. The
CMB sky signal is reconstructed to within a few percent ev-
erywhere, as is the foreground amplitude. Further, the spectral
indices are accurate to the �0.1 level wherever there is a sig-
nificant signal, and the monopole and dipole coefficients are very
close to the true values. Finally, even the reconstructed dust tem-
plate amplitude is correct to within 2%.

The results are slightlymoremixedwhen it comes to estimation
of uncertainties. For components with a relatively large intrinsic
uncertainty, such as the CMB sky signal and foreground spectral
index, the error estimates are quite reasonable. On the other hand,
for parameters with a high intrinsic signal-to-noise ratio, most
noticeably the dust template amplitude, the errors are clearly un-
derestimated because of significant modeling errors. (We note
that analysis of simulations with a foreground composition and
priors that match the assumedmodel yields, as expected from the
results shown in x 5, both point estimates and uncertainties in
agreement with expectations.)

The remaining and key issue is what the impact of these re-
siduals and increased uncertainties are on the CMB power spec-
trum and cosmological parameters at ‘ � 30. This is the topic of
x 6.4.

6.4. CMB Power Spectrum and Cosmological Parameters

We now consider the CMB power spectrum posterior with the
goal of understanding the impact of both residual foregrounds
and error propagation on the final results. To do so, we consider
both the identical simulation described in x 6.3 and a similar one

in terms of instrumental properties and sky coverage, but ex-
cluding foregrounds both from the simulated data and the model.
Comparing the two against each other allows us to disentangle
the effects of foregrounds and sky cut.
The top panel of Figure 13 shows the posterior mean reali-

zation specific spectrum, �‘, for three different cases. First, the
true full-sky spectrum is plotted as a red line. Second, the cut sky
but CMB-only spectrum is shown as a blue line, and finally, the
cut sky and ‘‘foreground-contaminated’’ spectrum is shown as a
black line. The 1 � confidence region about the latter is marked as
a gray region. The bottom panel shows the difference between the
foreground-contaminated spectrum and the full-sky spectrum (red
line) and difference between the two cut sky spectra (blue line).
In terms of absolute differences, we see that the foreground

errors (blue line in Fig. 13) are in general less than 50 �K2 at
‘ � 30, with a few occasional peaks at �100 �K2, and without
any striking biases. Already at this point, we may thus predict
that the absolute effect of residual temperature foregrounds on
cosmological parameters will be small at large angular scales,
when using the component separation method presented in this
paper.
Next, we consider the foreground-induced uncertainties. First

we note that if the total CMB spectrum uncertainty has been
properly estimated, then the full-sky difference spectrum (red
line in Fig. 13) should be distributed according to the uncertainties
indicated by the gray region. Except for some noticeable corre-
lated features around ‘ � 50, this agreement is quite reasonable.
Second, the blue line shows the differences due to foregrounds
alone. This term should thus be described by a corresponding
increase in the total uncertainty when including foregrounds in
the analysis.

Fig. 12.—Mean �2 map computed over posterior samples. A value of
�2 ¼ 15 corresponds to a �2 that is high at the 99% significance level.

Fig. 13.—Top: Comparison of the posterior mean realization power spectra,
�‘, as computed on the full sky (i.e., true realization spectrum; red line); as com-
puted on the cut sky, but not including foregrounds either in the simulation or in
the model (blue line); and as computed with Commander on the full simulation,
including the foreground complexity (black line). The gray area indicates the 1 �
confidence region for the case that includes foregrounds. Bottom: Difference be-
tween the spectra shown above; blue line shows the difference with and without
foregrounds, and the red line shows the difference between the spectra including
foregrounds and a sky cut and the true spectrum.
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To understand the relative magnitude of these contributions, it
is instructive to compute the relative magnitudes of the errors due
to cosmic variance, sky cut and instrumental noise, and fore-
grounds. These can be estimated from quantities ready at hand.
First, the standard expression for the cosmic variance is

Var(cosmic variance) ¼ 2

2‘þ 1
C2
‘ : ð48Þ

Second, the uncertainty due to the mask and instrumental noise
alone is given by the variance of � i

‘,

Var(mask; noise) ¼ � i
‘

� �2� � i
‘

� �2D E
; ð49Þ

where � i
‘ are generated in the analysis without foregrounds.

Similarly, the uncertainty due to the combined effect of themask,
instrumental noise, and foregrounds is given by the same expres-
sion but computed from the samples that also include foregrounds.
To establish an order of magnitude approximation of the fore-
ground-induced uncertainty alone, we assume that the variances
add in quadrature,

Var(fg) ¼ Var(mask; noise; fg)� Var(mask; noise): ð50Þ

This is of course not strictly correct, because the errors in question
are quite non-Gaussian, but it is a sufficient approximation for
our purposes.

These three functions are shown in the top panel of Figure 14
for the data set described above. In the bottom panel, we show
the ratios of the mask and noise error and the foreground error to
cosmic variance. First we note that the foreground error is always
smaller than the mask and noise induced error, except at the very
highest ‘ values, where the estimates are anyway not reliable.
However, at ‘ � 40 these two are almost comparable in mag-
nitude, both at the 25%Y50% level of the cosmic variance. Once
again assuming that these errors add in quadrature, neglecting a
20% error term implies underestimating the full errors by about
2% [ 1þ 0:22ð Þ1/2 � 1 ¼ 0:02].

At larger angular scales, we see that the foreground uncer-
tainty becomes essentially irrelevant, simply because the cosmic
variance dominates completely. At ‘ � 30, the relative magni-
tude of this term is seldom more than 10% of the cosmic vari-
ance, which translates to a relative underestimation of the total
error by only 0.5%. This implies a somewhat surprising con-
clusion. Exact foreground error propagation is not important on
the very largest scales, below, say, ‘ � 30, simply because the

Fig. 14.—Top: Contributions to the total power spectrum uncertainty from
cosmic variance (dotted line), sky cut and instrumental noise (dashed line), and
foregrounds (solid line). Bottom: Ratios of noise and sky cut errors (dashed line)
and foreground errors (solid line) to cosmic variance.

Fig. 15.—Slices through the CMB power spectrum likelihood. Black lines show the distributions from the foreground-free simulation, and red lines show the same for
the simulation that did include foregrounds. The ensemble-averaged spectrum is indicated by vertical solid lines, and the true realization-specific spectrum is indicated by
dashed lines. Note that at very low ‘ values, the distributions are essentially identical, because of cosmic variance domination. At ‘k30Y40, the additional uncertainty due
to foregrounds starts to become visible.
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cosmic variance is so totally dominating. However, the same
does not necessarily hold true on smaller scales. At ‘ � 40, the
foreground error increases the total uncertainty by several per-
cent, and this is likely to increase further to smaller scales.10 It
could constitute a very significant fraction of the total error in the
range between ‘ � 50 and 200, depending on the spatial fore-
ground power spectrum.

In Figure 15, we plot eight slices through the power spectrum
likelihood between ‘ ¼ 2 and 50, for the two cases that exclude
(black lines) and include (red lines) foregrounds. In these plots,
we see the same behavior as discussed above. At very low
‘ values, the widths of the distributions with and without fore-
grounds are essentially identical. However, at ‘ ¼ 40 the effect
of the foreground uncertainties starts to become visible, as the
red distribution is noticeably wider than the black distribution.
Still, it is also very clear from this figure that the effect of ne-
glecting foreground errors in the temperature spectrum at ‘P 50
in terms of cosmological parameters will be minimal.

To demonstrate this statement, we define a simple two-
parameter power spectrum model,

C‘ ¼ q
‘

15


 �n

Cin
‘ ; ð51Þ

where q is a free overall amplitude, n is a spectral tilt parameter,
and Cin

‘ is the actual theoretical power spectrum used to gener-
ate the simulation. We then map out the corresponding two-
dimensional posterior using the Blackwell-Rao estimator (Chu
et al. 2005). The analysis is restricted to the range between ‘ ¼ 2
and 30, which is the primary target range for our first WMAP
analysis (Eriksen et al. 2008).

Figure 16 shows the results in terms of two sets of contours.
The dashed contours show the results from the analysis excluding

foregrounds, and the solid contours show the results including
foregrounds. The true value of (q; n) ¼ (1; 0) ismarked by a cross.
The agreement between the two sets of results is excellent.
Two conclusions may be drawn from this exercise. First, the

method presented in this paper is fully capable of extracting the
valuable cosmological signal from the 3 yr WMAP data at large
angular scales in quite realistic simulations, even when using the
simplified foreground model described earlier. Second, the in-
creased uncertainty in cosmological parameters due to these
foregrounds at ‘P30 is negligible.

7. CONCLUSIONS

We have presented an algorithm for joint component separa-
tion and CMB power spectrum estimation. This algorithm is a
natural extension of theCMBGibbs sampler previously developed
by Jewell et al. (2004), Wandelt et al. (2004), and Eriksen et al.
(2004b) and the foreground sampler described by Eriksen et al.
(2006). The basic product from this algorithm is a set of joint sam-
ples drawn from the full joint posterior P(C‘; s; ajd), where C‘ is
the CMB power spectrum, s is the CMB sky signal, and a denotes
the set of all parameters in the foreground model. With this tool,
exact marginalization over very general foreground models is fea-
sible, and proper foreground uncertainties may be propagated
seamlessly through to the CMB power spectrum and, therefore,
to cosmological parameters.
There are some potential pitfalls the user of the method needs

to be aware of before applying it to real data. In particular, one
has to pay attention to possible degeneracies in the parametric
signal model fitted to the data. Such degeneracies are not un-
common in models relevant to CMB foreground analysis. Two
specific examples are synchrotron and free-free emission, with
spectral indices of �s ��3 and �A ¼ �2:15, respectively, and
the degeneracy between unknown offsets at all frequency bands
and the foreground zero level. In order to obtain reliable one-
dimensional marginal estimates of each component individually,
one must either make sure that the data have sufficient power to
resolve the model or impose priors to break the degeneracies.
Fortunately, since only the sum over all foregrounds is relevant
to the actual CMB reconstruction, these issues are of little concern
to the cosmological interpretation of the data.
The primary target of this work is Planck, scheduled to be

launched in late 2008, andwhichwill observe themicrowave sky
at nine frequencies from 30 to 857 GHz. Combined with the five
WMAP frequencies, these fourteen sky maps will constitute an
outstanding data set for both cosmological and Galactic studies.
Using the methods described in this paper, it will be possible to
constrain three or four foreground components pixel-by-pixel
and even more if adopting spatial templates as priors (e.g., the
H� template as a tracer for free-free).
Amore immediate application is the analysis of the 3 yrWMAP

temperature data, which is presented in a separate Letter by
Eriksen et al. (2008). As demonstrated in the present paper, the
method is fully capable of extracting the valuable cosmological
signal at large angular scales from this data set, both in terms of
the CMB power spectrum and cosmological parameters. Further,
a very general foreground model may be constrained to within a
few percent in all parameters.
In its present form, the method assumes identical beam re-

sponses at each frequency band. This limits its application to the
lowest angular resolution of a given data set. However, this is not
a fundamental limitation of the method, but only of our current
implementation. Specifically, it is straightforward to rewrite the
sampling equations presented in x 3 to handle the foreground

Fig. 16.—Joint posterior distributions for the two-parameter model defined
by eq. (51). Dashed contours show the results for the analysis without fore-
grounds, and solid contours show the same for the analysis with foregrounds. In
both cases, the contours are where�2 ln P(q; njd ) rises by 0.1, 2.3, 6.17, and 11.8
from its minimum value, corresponding (for Gaussian distributions) to the peak
and the 1, 2, and 3 � confidence regions. The cross marks the true input value,
(q; n) ¼ (1; 0).

10 The peculiarly low foreground error at ‘ � 50 may be connected with the
lack of features in the dust template at these angular scales; we do not believe it is
a general feature.
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amplitudes in spherical harmonic space, similar to the current
treatment of the CMB sky signal. In that case, convolution with
individual beams at each frequency poses no problem. An added
bonus is that onemay then optionally also either estimate or impose
a spatial power spectrum on the foregrounds, just as for the CMB
component. The implementation of this is left for future work.

Still, as demonstrated in this paper, even with the current im-
plementation we are able to perform a complete Bayesian joint
CMB and foreground analysis with the 3 yrWMAP temperature
data at ‘P 30Y50. Simple extrapolation with respect to angular
resolution and instrumental noise suggests that we will be able to
do at least as well for Planck up to ‘ � 100Y200, beyond which
other and simpler approaches may be applicable. We will quan-
tify these projections in greater detail in an upcoming publication
where we apply the method to state-of-the-art Planck-based sim-
ulations. An important part of this work is to quantify the impact
of modeling errors.

To conclude, given the recent successes of the Gibbs sampling
approach for analyzing both temperature and polarization CMB

data, and now also including realistic foreground modeling, we
believe that this method, or generalizations thereof, should
be the baseline analysis strategy for Planck at large angular
scales. We also note that its computational efficiency and un-
paralleled capabilities for propagating systematic uncertainties is
a combination that will prove extremely valuable to future CMB
experiments.
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and Space Administration. H. K. E. acknowledges financial sup-
port from the Research Council of Norway and the hospitality of
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APPENDIX A

THE TEMPLATE AMPLITUDE COUPLING MATRIX

In x 3.2.1 we described the sampling algorithm for the conditional Gaussian distribution P(s; a�;i; bj; ck jC‘; �k ; d ). This involved
calculating the joint mean,

x̂ ¼ A

P
� A

TN�1� d

tT�; jN
�1
� dP

� fj(�)f
T
j N
�1dP

� gggk(�; �k)N
�1
� d

2
66664

3
77775; ðA1Þ

and multiplying with the inverse covariance matrix,

A�1 ¼

S�1 þ ATN�1A ATN�1T ATN�1F ATN�1G

TTN�1A TTN�1T TTN�1F TTN�1G

FTN�1A FTN�1T FTN�1F FTN�1G

GTN�1A GTN�1T GTN�1F GTN�1G

2
6664

3
7775: ðA2Þ

We nowwrite each element in this matrix explicitly, for the benefit of readers whowant to implement the algorithm themselves. The
elements in the first row of blocks are given by,

S�1 þ ATN�1A � S�1 þ
X
�

AT
�N
�1
� A�; ðA3Þ

ATN�1T � AT
�N
�1
� t�; j; ðA4Þ

ATN�1F �
X
�

AT
�N
�1
� fj(�) f j; ðA5Þ

ATN�1G �
X
�

AT
�N
�1
� gggk(�; �k): ðA6Þ

The upper part of the second row is

TTN�1T � tT�; jN
�1t�;k ; ðA7Þ

TTN�1F �
X
�

tT�; jN
�1
� fk(�) f j; ðA8Þ

TTN�1G �
X
�

tT�; jN
�1
� gggk(�; �k): ðA9Þ
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Note that in the above, TTN�1T is the block containing the second derivatives of the log density with respect to the amplitudes
(a�;j; a� 0;k), but by the assumed independence of noise at different frequency channels, the terms with � 6¼ � 0 vanish. The elements of
the upper part of the third row are

FTN�1F �
X
�

fj(�) f
T
j N
�1
� f k fk(�); ðA10Þ

FTN�1G �
X
�

fj(�) f
T
j N
�1gggk(�; �k); ðA11Þ

and finally, for the last block on the diagonal we have

GTN�1G ¼
X
�

gggTj (�; �j)N
�1
� gggk(�; �k): ðA12Þ

APPENDIX B

JEFFREYS’ IGNORANCE PRIOR FOR A SPECTRAL INDEX

In x 4.2 it was shown that to obtain unbiased parameter estimates based on marginal statistics for a power-law foreground model, it
is necessary to adopt a proper ignorance prior for the spectral index. In this appendix we derive the full expression for this prior,
including noise and the antenna-to-thermodynamic conversion factor, a(�).

The data model is in this case

d� ¼ Aa(�)
�

�1


 ��

þn�; ðB1Þ

where n� is a noise term with variance �2
� ¼ hn2�i. We assume no noise correlations between frequencies. The log-likelihood then

reads

�2 lnL(�) /
X
�

d� � Aa(�)(�=�1)
�

�2
�

� �2
: ðB2Þ

Jeffreys’ ignorance prior is defined by

PJ(�) �
ffiffiffiffiffiffiffiffi
F��

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� @2 lnL

@2�

� s
; ðB3Þ

where the averaging brackets denote an ensemble average. We therefore differentiate the log-likelihood twice and find

�2 @
2 ln L
@2�

¼ 4
X
�

1

�2
�

A2a(�)2
�

�1


 �2�

ln2
�

�1


 �
� d� � Aa(�)

�

�1


 �� �
Aa(�)

�

�1


 ��

ln2
�

�1


 �( )
: ðB4Þ

Taking the ensemble average of this expression simply means setting hd�i ¼ Aa(�)(�=�1)
�, and the second term therefore vanishes,

� @2 lnL
@2�

� 
/
X
�

A2a(�)2

�2
�

�

�1


 �2�

ln2
�

�1


 �
; ðB5Þ

neglecting irrelevant constants. Thus, the full expression for Jeffreys’ ignorance prior for a spectral index � reads

PJ(�) /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�

a(�)2

�2
�

�

�1


 �2�

ln2
�

�1


 �s
: ðB6Þ

APPENDIX C

TEMPLATE ORTHOGONALITY CONSTRAINTS

Most of the discussion in x 4 concerned the degeneracy between free offsets at each frequency band and the zero level of a foreground
component with a free amplitude at each pixel. If neither is known, it is possible to add an arbitrary constant to all amplitudes and
subtract a correspondingly scaled value from each free offset, essentially without affecting the final �2.
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To break this degeneracy, two approaches were proposed. First, if external calibration is possible at one or more frequencies, such
information should be exploited and conditioned upon. The second approach was to demand that the free offsets do not have a frequency
component similar to that of the foreground, by effectively fitting out the corresponding spectrum from the offsets.

These issues apply more generally to any fixed template with a free amplitude at all frequency bands. For most typical applications,
this includes also three unknown dipole components, in addition to the familiar offset or monopole. In the following, we simply consider
a general collection of templates denoted by T, which is an Npix ;Nt matrix consisting of Nt templates listed in its columns. Coupled to
this, we define a coefficient vector a� ¼ fa�;ig containing the template amplitudes for each frequency and template. The sky response at
frequency � is thus given by Ta�.

We now derive the joint orthogonality constraints for Nt templates, for a sky model that includes two components with a free
amplitude at each pixel, namely, a CMB sky signal and a foreground component with a given frequency spectrum.We denote the vectors
of free template coefficients for the CMB and foreground terms by b and c, respectively, and the foreground spectrum is defined by the
Npix ;Npix diagonal matrix F� having entries equal to g(�; a) on the diagonal. Note that the frequency spectrum of the CMB component
is constant, and the corresponding matrix is therefore the identity. It is omitted in the following.

With this notation, the �2 to be minimized reads

�2 ¼
X
�

aT�T
T � bTTT � cTFT

�T
T

� �
N�1� Ta� Tb� TF�cð Þ: ðC1Þ

Equating the derivatives of this expression with respect to b and c to zero gives

@�2

@b
¼ �2

X
�

TTN�1� Ta� Tb� TF�cð Þ ¼ 0; ðC2Þ

@�2

@c
¼ �2

X
�

FT
�T

TN�1� Ta� Tb� TF�cð Þ ¼ 0: ðC3Þ

These two sets of equations provide a general expression for a as a function of b and c, and at this point, we have done nothingmore than
performed a partial change of basis.

We now impose the prior that breaks the degeneracy between the template and the foreground amplitudes, by requiring c ¼ 0. The
two above equations then has a unique solution. In particular, a is given byX

�

(B� � DC�1A�)a ¼ 0; ðC4Þ

where we, for notational transparency, have defined four ancillary matrices

A� ¼ TTN�1� T; ðC5Þ
B� ¼ FTTTN�1� T; ðC6Þ

C ¼
X
�

A�; ðC7Þ

D ¼
X
�

B�: ðC8Þ

Note that equation (C4) corresponds to Nt separate constraints on a, and in particular, each row of the matrix in parentheses defines one
orthogonality vector q�. These constraints are thus imposed in the CG solver using the same projection operator method that was
described in x 3.2.1.

However, we once again stress that this approach corresponds to imposing a very strong prior that is not realized in practice. If there
are indeed random fluctuations in the unknown offsets, then these will have a component that happens to have a spectrum similar to the
foregrounds. This component will in the present approach be interpreted as a foreground signal. Further, the sampler is by this constraint
not allowed to explore the joint distribution between the two components. In other words, both the marginal zero level and offset
uncertainties will be underestimated by this approach. (Note that most other parameters, such as the CMB signal, are very weakly af-
fected by this, because they only depend on the sum of the two components, not each of the two separately.)

That being said, for experiments where this constraint is required (e.g., differential observatories such asWMAP), it is difficult indeed
to construct an alternative and more self-consistent approach. For example, theWMAP team adopted a method based on a cosecant fit to
a very crude, plane-parallel Galaxy model. In their case, no uncertainties were quoted at all. This specific issue is considered in further
detail in the actual 3 yr WMAP analysis (Eriksen et al. 2008).
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Górski, K. M., Banday, A. J., Bennett, C. L., Hinshaw, G., Kogut, A., Smoot,
G. F., & Wright, E. L. 1996, ApJ, 464, L11
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